Group Leader

profile_image
Dr. Nina Cabezas-Wallscheid
Group Leader
Phone:+49 761 5108-530

Lab Nina Cabezas-Wallscheid

Selected Publications

1.
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck P, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P,  Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian KM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A (2017)
Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy
2.
Cabezas-Wallscheid N, Trumpp A. (2016)
Potency finds its niches. Adult bone marrow employs a surprisingly simple hematopoietic hierarchy.
3.
Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MA, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A. (2016)
Myc depletion induces a pluripotent dormant State mimicking diapause
4.
Cabezas-Wallscheid N*, Klimmeck D*, Hansson J*, Lipka DB*, Reyes A*, Wang Q, Weichenhan D, Lier A, von Paleske L, Renders S, Wünsche P, Zeisberger P, Brocks D, Gu L, Herrmann C, Haas S, Essers MA, Brors B, Eils R, Huber W, Milsom MD, Plass C, Krijgsveld J, Trumpp A. (2014)
Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis
5.
Cabezas-Wallscheid N, Eichwald V, de Graaf J, Löwer M, Lehr HA, Kreft A, Eshkind L, Hildebrandt A, Abassi Y, Heck R, Dehof AK, Ohngemach S, Sprengel R, Wörtge S, Schmitt S, Lotz J, Meyer C, Kindler T, Zhang DE, Kaina B, Castle JC, Trumpp A, Sahin U, Bockamp E. (2013)
Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model

Laboratory Nina Cabezas-Wallscheid

Laboratory Nina Cabezas-Wallscheid

Adult hematopoiesis is responsible for the production of billions of mature blood cells every day. It is a hierarchically organized process that almost exclusively occurs in the red bone marrow. Hematopoietic Stem Cells (HSCs) reside at the top of this hierarchy and represent an extremely rare cell population within the bone marrow. Hematopoiesis is tightly regulated and rapidly reacts to stress stimuli, for example blood loss and inflammation, by modulating lineage commitment and terminal differentiation of progenitor cells.

HSCs harbor long-term reconstitution capacities and have the ability to generate multipotent progenitors, which in turn differentiate into lineage-committed populations and subsequently into mature blood cells. Another fundamental feature of HSCs is their quiescent cellular status in terms of cell cycle activity and low biosynthetic activity. Quiescence or dormancy preserves and governs the life-long functionality of HSCs and protects them from accumulating genomic mutations potentially acquired during rapid cell divisions.

Regulators of the dormant HSC state include cell-intrinsic signaling pathways as well as soluble components produced by the bone marrow niche. For instance, stress-signals such as interferons, lipopolysaccharide or stress-conditions including chemotherapy are known to cause HSC proliferation, thereby altering their homeostatic dormant status. In contrast to the factors that can activate and promote HSC exit from dormancy, little is known about the mechanism maintaining HSC quiescence. Importantly, dysregulation of this fine-tuned system may lead to aberrant hematopoiesis such as leukemia. Currently, the preservation of the dormant HSC status and the development towards a leukemic stem cell population is not well understood. 

The goal of our laboratory is to cover novel ground on mechanisms that maintain HSC quiescence. We have recently performed an extensive multi-layered OMICs analysis of HSCs and four progenitor populations (MPP1-MPP4) by combining DNA-methylome, whole-transcriptome and global proteome analyses. Our work identified exclusive gene expression clusters as potential gatekeepers of HSC self-renewal such as splicing variants, long non-coding RNAs and retinoic acid metabolism.

Furthermore, we have observed that particular dietary habits influence the balance between HSC maintenance and differentiation, findings which pave the way to new fundamental and yet unsolved questions. In the future, we aim to investigate the impact of different nutritional regimes on HSC maintenance and to analyze the underlying regulatory mechanisms. Our ultimate goal is to translate these findings into human disease settings such as dietary deficiencies and leukemia. To address these biological questions, we are pursuing interdisciplinary projects which include the use of second-generation mouse models, bone marrow imaging in combination with state-of-the-art population and single-cell OMICs analysis.

 
loading content